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Cubic Equations of State for Transport Properties: 
An Equation for the Thermal Conductivity of Oxygen 
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A scheme for the development of equations for the transport properties in terms 
of pressure and temperature, so-called transport equations of state, is presented. 
The surfaces of transport properties and density as a function of pressure and 
temperature reveal similarities, which become even more evident when the 
residual transport property as a function of pressure and temperature is con- 
sidered. Even the spinodals of transport and thermal properties coincide in the 
p, T plane, as can be shown mathematically and as was already empirically 
found for water and oxygen. Based on these similarities a cubic transport equa- 
tion of state is evaluated for the residual thermal conductivity of oxygen. The 
new equation is only a little less accurate than the already established virial 
transport equation of state for oxygen. It is, however, much simpler and needs 
only a few parameters. The accuracy is still good enough for practical applica- 
tions. The results demonstrate that cubic equations of state can describe 
transport properties and are a basis for generalized estimation methods for the 
transport properties of fluids. 

KEY WORDS: equation of state (cubic); oxygen; thermal conductivity; trans- 
port equation of state. 

1. I N T R O D U C T I O N  

Only a few attempts have been made to describe the transport properties 
thermal conductivity and viscosity in terms of pressure and temperature 
over the entire fluid range by means of a single consistent equation for both 
phases. The kinetic and molecular theories describe transport properties as 
functions of density and temperature and therefore most of the correlations 
of transport properties contain density and temperature as independent 
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variables. A thermal equation of state is needed, then, to determine the 
density. Errors in the density affect the accuracy of the transport property. 
It is therefore of some practical interest to calculate transport properties as 
a function of temperature and pressure. 

Previous studies [1~4] revealed that equations of the form 

p = F(TP, T) (1) 

with pressure p, temperature T, and transport property TP best represent 
the surfaces of the transport properties. Based on apparent similarities 
between the surfaces of transport properties and the density, a so-called 
transport equation of state of the virial type has already been established 
for water [1], oxygen [2, 3], and nitrogen [4]. This transport equation of 
state contains 21 adjustable coefficients and describes the transport proper- 
ties within their experimental accuracy. A complete data set covering the 
entire fluid range is necessary to fit the coefficients of the equation properly. 
The basic structure of the transport equation of state is similar to that of 
the thermal equation of state developed by Bender [5]. 

When experimental data over the entire fluid range do not exist, cubic 
equations of state seem to be more suitable because they have proven 
successful in predicting thermodynamic properties, expecially at higher 
pressures. Moreover, generalized cubic equations of state can predict ther- 
modynamic properties when experimental data are lacking. 

Cubic equations of state, however, have not yet been applied to the 
transport properties of fluids. In the following such an equation shall be 
derived in order to evaluate how accurately transport properties can be 
represented. The thermal conductivity of oxygen is chosen as an example, 
because an accurate virial transport equation of state is already available 
[3] for comparison. 

2. B A C K G R O U N D  

For the development of transport equations of state in terms of 
pressure and temperature, a general scheme can be established when the 
following assumptions are made. 

(1) The transport properties of fluids are variables of state. As a 
consequence the transport property of a pure substance is deter- 
mined by two variables of state, e.g., pressure and temperature or 
density and temperature. Non-Newtonian and anisotropic fluids 
are not considered. 

(2) An anomalous behavior of the transport properties around the 
critical point is not considered. According to Sengers [6] one 
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can separate the thermal conductivity into a background con- 
tribution and an additive singular contribution, which accounts 
for the critical enhancement. In this paper only the background 
contribution is dealt with. 

(3) The isotherms of the transport properties are strictly monotonic 
increasing functions of the density. 

(4) An equation for the transport properties should be explicit in 
pressure, because otherwise the functional form is not univalent 
and singularities at the critical point occur [1-4]. 

The transport property at constant temperature is only a function of 
density p 

TP = f (p )  (2) 

Because of the third assumption the inverse function can be formed and is 
univalent, 

p = f - I ( T p )  (3) 

The thermal equation of state for an isotherm reads 

p = q~(p) (4) 

Replacing the density one obtains the transport equation of state for an 
isotherm 

p =  ~0[f '(TP)] (5) 

For all isotherms one obtains the transport equation of state, Eq. (1): 

p = F(TP, T) 

Previous transport equations of state [1-4] were based on an analysis 
of the surfaces of transport properties. The isotherms in a p, p diagram 
(Fig. 1) are very similar to the isotherms in a p, TP diagram (Fig. 2). In 
order to describe the transport properties by means of pressure-explicit 
equations, a fold-like shape for the subcritical isotherms of the transport 
properties inside the two-phase region was assumed [1, 3], as is known for 
the isotherms of the density. Furthermore, accurate experimental data of 
the transport properties of water and oxygen reveal that the spinodals of 
the transport properties coincide with the spinodals of the density in the 
p, T plane [1, 3]. In other words, the p, T coordinates of points G and L 
in Figs. 1 and 2 for each subcritical isotherm are the same. 
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Fig. 1. Subcritical isotherm of the density. Critical 

point: C. P. Points of the spinodal: G, L. 

In the following it will be shown that the assumption of a fold is 
reasonable and that the spinodals of both transport and thermal properties 
coincide in the p, T plane. 

The spinodal of the thermal properties is defined by 

~p = 0  (6) 

P 

J " Y i  

/ ~ / F  / " /Y bubble line \ \ 

~" "TPo (T) 

TP 
Fig. 2. Subcritical isotherm of the transport property. 
Critical point: C. P. Points of the spinodal: G, L; dilute 
gas: . . . . . .  . 
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For a given temperature T the points of the spinodal are obtained from 
Eq. (6) and the thermal equation of state, Eq. (4). The maximum on the 
gas branch of the isotherm, point G in Fig. 1, is characterized by 

o=p l 7 j < o  (7) 

The ordinate of the maximum shall be PG- 
The minimum on the liquid branch, point L in Fig. 1, with the 

ordinate PL is characterized by 

[ e=pl 
>o (8) 

At the critical point both extremes fall together in one point with an inflec- 
tional horizontal tangent: 

[  =Pl 
~ p Z j r = 0  (9) 

In order to analyze the behavior of a subcritical isotherm of the 
transport properties at the points of the spinodal, the partial differential 
of the pressure over the transport property at constant temperature T is 
written as 

0p 

From Eq. (10) it is evident that (Op/c3TP)r becomes zero if and only if 
(~?p/Op)r equals zero, Eq. (6), because the term (c~p/c?TP)r is positive and 
finite. For a given temperature T, Eq. (6) is satisfied at the points where the 
pressure coordinates are PG and PL. Therefore the isotherm with tem- 
perature T of the transport property exhibits points with horizontal 
tangents at the same pressure values. The kind of extremes, minima or 
maxima, remains the same as is shown by means of the second partial 
differential of the pressure over the transport property for the points of 
the spinodal: 

ap 

The sign on the right-hand side of Eq. (1 1) is determined by the term 
(632p/63pZ)T,S p and therefore determined by Eqs. (7) and (8). In the case of 
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the critical point, a point with an inflectional tangent is obtained according 
to Eq. (9), as previously derived [7]. 

When a maximum and a minimum of the subcritical isotherms of the 
transport properties inside the two-phase region exist, it is clear that a fold- 
like shape of the isotherms in this region is a reasonable assumption. For 
a given temperature the extremes appear at the same pressures as those of 
the isotherms of the density. Therefore, the projection of the spinodal 
of both transport and thermal properties yields identical curves in the 
p, T-plane. 

In spite of the similarities of the isotherms of both properties in Figs. 1 
and 2, a principal difference is obvious. Due to the temperature dependence 
of the transport properties of the ideal gas, TPo(T), the gas branch of the 
isotherm of the transport property lies on the right-hand side of the dew 
line when projected into the p, TP plane in Fig. 2. In other words, the 
transport property of a saturated vapor is smaller than the transport 
property at the same pressure and higher temperature. 

Subtracting the ideal gas value TPo from the transport property TP, 
the residual transport property ATP is obtained. The shape of the isotherm 
in a p, ATP representation, Fig. 3, corresponds much better to that of the 
density (see Fig. 1). 

The residual transport property ATP is defined by 

ATP = TP - TPo (12) 

C.P. 

F Y 
,~ / / ' ~e  w line / 
Y bubble line 

/ 
\ 
AlP 

Fig. 3. Subcritical isotherm of the residual trans- 
port property. Critical point: C.P. Points of the 
spinodal: G, L. 
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As is well known, it does not depend or depends only slightly, on the tem- 
perature [-8, 9]. The transport property in Eqs. (1), (2), (3), and (5) can 
therefore be replaced by its residual property. 

3. C O R R E L A T I O N S  

The scheme will now be applied to the thermal conductivity of oxygen 
with the aim to develop an accurate equation with as few parameters as 
possible. 

All properties are reduced by their values at the critical point 

pr= p/pc (13) 

T~= T/T c (14) 

p,=,o/pc (15) 

except the residual thermal conductivity which is reduced by 

Z ~  r = A 2 / A  (16) 

with 

5/6 2/3 
A -  ~ Pc 

T1/6 IAr 1/2 ~[ 1/3 (17) 
c ~ ' ~  ~ A 

according to a dimensional analysis [10]. Here N is the universal gas 
constant, M is the molar mass and NA the Avogadro constant. 

The characteristic constants of oxygen are [-3] 

Pc = 5.0433 MPa, 

Pc=436-14kg'm 3, 

To = 154.581 K 

M =  31.999 kg-kmo1-1 

The inverse function pr(A2r) of the thermal conductivity of oxygen is 
shown in Fig. 4. The different isotherms form a single curve, which is well 
represented by the empirical equation 

1 d ~ ,  r 

Pr Vr a + b d 2  ~ (18) 

where the parameters a and b were fitted to recommended residual thermal 
conductivities of oxygen as a function of density from [3]. 

An empirical equation was adopted, because up to now no theoreti- 
cally based equation for the residual transport property exists. 
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Inverse function p(ATP) for the thermal conductivity of oxygen. Symbols, recom- 
mended values [3]; line, calculated by means of Eq. (18). 

The thermal properties are represented by a cubic equation of state 
with three temperature-dependent parameters: 

where 

Z c T r A C 
F (19) 

Pr Vr (Vr + B )  vr (vr + B) Vr ~ 

A = A I T r + A  2 (20) 

B=B1T2+B2Tr+B3 (21) 

C = C1 T 2 + C2 Tr + C3 (22) 

Zc represents the critical compressibility. 
Equation (19) was derived from a general generating cubic equation of 

state proposed by Martin [ 11 ]. It represents the density of oxygen with an 
absolute average deviation of 0.6%. Maximum deviations of about 10% 
occur in the critical region. However, an accurate description of the critical 
region is beyond the scope of this paper. 
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For the determination of the parameters in Eqs. (18) and (19) recom- 
mended values of the thermal conductivity of oxygen from Laesecke [33 
were used. These recommended values were evaluated by means of a criti- 
cal comparison of experimental data from different literature sources. The 
data of Keyes [12], Ivanova et al. [133, and Roder [14] were finally 
correlated and tables of the thermaI conductivity of oxygen were generated 
covering a temperature range 70-1400 K and a pressure range from 0.1 up 
to 100 MPa. Their estimated accuracy varies from 3% a t  atmospheric 
pressure ,to 18% near the critical point [33. Subtracting the thermal con- 
ductivity of the dilute gas from the tabulated values, recommended residual 
thermal conductivities as a function of pressure and temperature are 
obtained. The parameters of both Eqs.(18) and (19) were fitted 
simultaneously to a total of 733 recommended values of the residual ther- 
mal conductivity of oxygen and yielded 

a=2.92364 A t =  -2.557545 B~=0.01788827 C1 = -0.01904237 

b = 0.5132937 A 2 = 5.615214 B 2 = -0.01277994 C2 = -0.2257398 

B3 = -0.2658302 C3 = 1.5613221 

with a mean relative error in the residual thermal conductivity of - 0 . 2 4 %,  
a standard deviation of 8.5%, and an absolute average deviation of 3.42%. 

Figure 5 shows the reduced pressure versus reduced residual thermal 

0 
0 S lO 15 20 25 30 35 qO 

a x / a  

Fig. 5. Reduced pressure versus reduced residual thermal conductivity of oxygen for different 
reduced temperatures. Symbols, recommended values [3]; lines, calculated by means of 
Eqs. (18) and (19); saturation, A. 
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conductivity for different temperatures. The recommended data are marked 
with symbols whereas the calculation is represented by the solid line. 
Except for the region around the critical point, the new equation represents 
the recommended values satisfactorily. 

The departure plots, Figs. 6a and b, reveal good agreement for 
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Fig .  6. (a)  D e p a r t u r e s  o f  the  cub ic  t r a n s p o r t  e q u a t i o n  o f  state from r ecom-  

m e n d e d  data [3  ] for the residual thermal c o n d u c t i v i t y  of  o x y g e n  versus  reduced 
residual thermal conduc t iv i ty .  (b) Departures at high residual thermal c o n d u c -  

tivities. 
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reduced residual thermal conductivities above values of 10. For lower 
residual thermal conductivities, the errors increase because then the 
residual thermal conductivities become small compared with the thermal 
conductivity of the dilute gas. 

The property of interest is, of course, the thermal conductivity itself 
rather than its residual part. Therefore departure plots for the thermal 
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Fig. 7. (a) Departures of the cubic transport equation of state from recom- 
mended data [3 ] for the thermal conductivity of oxygen versus reduced residual 
thermal conductivity, (b) Departures at high residual thermal conductivities. 
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conductivity are shown in Figs. 7a and b. They dearly demonstrate that 
the errors reduce drastically at low residual thermal conductivities. The 
mean relative error for the thermal conductivity is -0.4 % with a standard 
deviation of 3.6%. The absolute average deviation is 0.9%. 

The virial transport equation of state for oxygen [3] yielded a mean 
relative error in the thermal conductivity less than 0.01% with a standard 
deviation of 0.7% and an absolute average deviation of 0.5%. It is more 
accurate than the new equation. However, the difference in accuracy 
between the two is about the same as that for virial and cubic thermal 
equations of state. The cubic transport equation of state has a relatively 
simple structure and is therefore easier to solve numerically than the more 
complex virial transport equation of state. 

4. CONCLUSIONS 

Phenomenological investigations reveal that the previously stated 
similarities [ 1 4 ]  between the surface of transport properties and the den- 
sity become more pronounced when only the residual part of the transport 
property is considered. Also, the spinodals of transport and thermal 
properties coincide in the p, T plane, as already known from empirical 
studies [1, 3]. In a similar way as for the thermal properties, cubic equa- 
tions of state can describe the transport properties as a function of pressure 
and temperature. Also, the residual transport properties can be represented 
in terms of pressure and temperature, which is demonstrated for the ther- 
mal conductivity of oxygen. Since generalized cubic equations of state are 
known to permit predictions of thermodynamic properties, they also seem 
to be a basis for generalized estimation methods for the transport proper- 
ties of fluids in terms of pressure and temperature. 
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